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Società Italiana di Fisica
Springer-Verlag 2002

Algebraic methods in quantum mechanics: from molecules
to polymers

F. Iachello1 and S. Oss2,a

1 Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, CT 06520-8120, USA
and
Department of Chemistry, Sterling Laboratory, Yale University, New Haven, CT 06520-8107, USA
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Abstract. We present a brief review of algebraic techniques developed and applied in molecular spec-
troscopy in the last five years. We also outline perspectives for new applications of the Lie algebraic
method in the first decade of the new century.
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1 Introduction

Lie algebraic methods have been useful in the study of
problems in physics ever since Lie algebras were intro-
duced by Sophus Lie at the end of the 19th century, es-
pecially after the development of quantum mechanics in
the first part of the 20th century. This is because quan-
tum mechanics makes use of commutators [x, px] = ~
which are the defining ingredients of Lie algebras. The
use of Lie algebras as a tool to systematically investigate
physical systems (the so-called spectrum generating al-
gebras) did not however develop fully until the 1970’s,
when it was introduced in a systematic fashion by one
of the authors (F.I.) and Arima in the study of spec-
tra of atomic nuclei (interacting boson model) [1,2]. In
1981, one of the authors (F.I.) introduced Lie algebraic
methods in the systematic study of spectra of molecules
(vibron model) [3]. This introduction was based on the
second quantization of the Schrödinger equation with a
three dimensional Morse potential and described rotation-
vibration spectra of diatomic molecules [4]. Soon after-
wards the algebraic method was extended to rotation-
vibration spectra of polyatomic molecules [5]. In the
intervening years much work was done. Most notable ad-
vances were the extension to two coupled one-dimensional
oscillators [6] and its generalization to many coupled one-
dimensional oscillators [7], which led to a simpler treat-
ment of vibrational modes in polyatomic molecules, and
the extension to two-dimensional oscillators [8] which al-
lowed a simpler description of bending modes in linear
molecules. The situation up to 1995 was reviewed in ref-
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erence [9]. This article presents a brief review of the work
done in the last five years and, most importantly, provides
perspectives for the algebraic method in the first decade of
the new century.

2 Algebraic methods

In order to place the algebraic method within the context
of molecular spectroscopy, we begin with a brief descrip-
tion of it.

The essence of the algebraic method can be traced to
the Heisenberg formulation of quantum mechanics [10].
Consider a quantum problem in one-dimension with
Hamiltonian

H = − ~
2

2m
d2

dx2
+ V (x).

Rather than solving the differential equation HΨ(x) =
EΨ(x) directly, consider the case of a harmonic oscillator
potential

V (x) = kx2/2

and introduce creation and annihilation operators

a† =
1√
2

(
x− d

dx

)
,

a =
1√
2

(
x+

d
dx

)
together with a vacuum state |0〉. The Hamiltonian for the
harmonic oscillator can be written as

H = ~ω(a†a+ 1/2)
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Fig. 1. The Morse potential and its approximation with a
harmonic oscillator potential.

with eigenvalues

E(n) = ~ω(n+ 1/2), n = 0, 1, ...,∞

and eigenstates

|n〉 =
1√
n!

(a†)n |0〉 ·

The harmonic frequency is ω = (k/m)1/2. For a generic
potential, expand V (x) in powers of x

V (x) =
∑
i=2

kix
i

i.e. in powers of a†, a, a†a and diagonalize it in the space
n = 0, ..., N .

The set of four operators a†, a, a†a, 1 forms an algebra
with commutation relations

[a, a†] = 1; [a, a†a] = a; [a†, a†a] = a†

called the Heisenberg-Weyl algebra H(2) (the identity 1
commutes with all operators). Hence the method wherein
the Hamiltonian operator is expanded in powers of op-
erators of H(2) is called algebraic harmonic analysis [11].
The advantage of the method is that all manipulations are
done algebraically rather than using differential operators.
The key ingredients in these algebraic manipulations are
the matrix elements of the operators, a†, a (called step up
and step down operators) given by

a† |n〉 =
√
n+ 1 |n+ 1〉 ; a |n〉 =

√
n |n− 1〉 ·

It is all one needs to calculate any observable within the
framework of harmonic analysis. However, molecular po-
tentials often deviate considerably from harmonic (Fig. 1).
As a result, the expansion of V (x) contains many parame-
ters and/or the basis in which the diagonalization is done
needs to be taken very large, N →∞.

This difficulty can be overcome by considering other
solvable potential functions which contain from the be-
ginning anharmonicity. One such a function is the Morse
function

V (x) = V0 [1− exp(−a(x− x0))]2 .

With a series of transformations, the Schrödinger equation
with a Morse potential can be written in terms of an al-
gebra composed of four operators F+, F−, Fz, N satisfying
commutation relations

[F+, F−] = 2Fz; [F±, Fz] = ±F±.

(The operator N commutes with all elements.) The four
operators form a Lie algebra, called U(2), while the three
operators F+, F−, Fz form a Lie algebra, called SU(2),
isomorphic to the angular momentum algebra and hence
called quasi-spin algebra. The Hamiltonian for the Morse
oscillator, when written in terms of these operators takes
the simple form

H = E0 +AF 2
z .

Introducing the vibrational quantum number v related to
the eigenvalue M of Fz by v = (N−M)/2, the eigenvalues
of H can be written as

E(v) = E0 +AN2 − 4A(Nv − v2),
v = 0, 1, ..., N/2 or (N − 1)/2 (N even or odd)

and the eigenfunctions as |N, v〉. The expression for the
energy levels can be cast in the familiar form

E(v) = ~ωe
(
v +

1
2

)
− ~ωexe

(
v +

1
2

)2

which represents an anharmonic oscillator with quadratic
anharmonicities. The algebra of U(2) provides then a
framework for performing algebraic anharmonic analysis.
A generic potential can be expanded in terms of quasi-
spin operators F+, F−, Fz . All one needs are the matrix
elements of the step up and step down operators of SU(2)
given by

F− |N, v〉 =
√
v(N − v + 1) |N, v − 1〉 ,

F+ |N, v〉 =
√

(N − v)(v + 1) |N, v + 1〉 ·

The anharmonic analysis based on the Lie algebra U(2)
shares with the harmonic oscillator analysis its simplicity
while at the same providing a basis in which anharmonic-
ities are built in from the very beginning. Furthermore,
for molecular potentials that are not very different from
Morse, the expansion converges very quickly, i.e. very few
terms are needed to obtain an accurate description. Also
the harmonic limit can be easily recovered from U(2) using
a mathematical procedure called contraction (1/N → 0).
It is easy to see that, by renormalizing the operators F+

and F− with N1/2, their matrix elements go over those of
the harmonic oscillator in the limit N →∞.

The Morse function is not the only one that can be
used to provide a basis for anharmonic analysis. Another
function of interest in molecular physics, especially for
bending vibrations, is the Poeschl-Teller function (Fig. 2),

V (x) = − V0

cosh2 ax
,
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Fig. 2. The Poeschl-Teller potential.

This function is also associated with the Lie algebra U(2).
The potential functions for which a connection with the
algebra of U(2) is possible have been completely enumer-
ated.

The algebraic method can be applied to problems in
any number of dimensions, in particular two and three
dimensions where harmonic analysis is done in terms of
the Weyl-Heisenberg algebras H(3) and H(4), and an-
harmonic analysis in terms of the Lie algebras U(3) [8]
and U(4) [3]. Indeed the original suggestion to use alge-
braic methods in molecular physics was in terms of the
Lie algebra U(4) within which it is possible to describe
the eigenstates and eigenvalues of the Morse potential in
three dimensions. In general for a quantum mechanical
problem in v dimension anharmonic analysis can be done
in terms of the Lie algebra U(v + 1) [12].

3 The role of algebraic methods

The algebraic formulation of quantum mechanics outlined
above can be used to attack problems of relevance in
physics and chemistry. In particular, in molecules it can be
used to analyze rotational and vibrational spectra. For the
treatment of electronic spectra, additional ingredients, de-
scribing the electron spin, are needed. An algebraic model
of electronic spectra was introduced in 1989 [13] but it
has not been exploited much up to this point. Instead the
field in which the algebraic method has had most impact
is that of vibrational spectroscopy. The reason is that the
main advantages of the algebraic method are:

(i) anharmonicities in the energy spectra are put in from
the very beginning;

(ii) anharmonicities in the interactions between different
modes are introduced automatically since they are
already contained in the matrix elements of the step
operators;

(iii) the method allows one to calculate wave functions
and thus observables other than energies, such as
intensities of transitions (infrared, Raman, Franck-
Condon).

Since anharmonicities play a crucial role in vibrational
spectroscopy, it is here that algebraic methods have found
their most useful application.

4 Vibrational spectroscopy

Vibrational spectroscopy can be studied with a vari-
ety of experimental tools. Infrared and Raman spec-
troscopy provide information on the vibrational modes
built on the ground state electronic configuration. Franck-
Condon spectroscopy provides information on the vi-
brational modes built on two electronic manifolds. For
the sake of discussion in this article it is conve-
nient to divide molecules according to their size. We
shall denote molecules with n = 2−4 atoms “small
molecules”, molecules with n = 5−100 atoms “medium-
size molecules” and molecules with n > 100 “macro-
molecules”.

4.1 Small molecules

When dealing with molecules an important aspect is what
coordinate system is chosen. For small molecules the best
set for vibrational analysis is provided by the internal co-
ordinates. If A is the number of atoms, the number of in-
ternal coordinates is 3A−6. If the molecule is linear there
are 3A− 5 internal coordinates. The algebraic method as
applied to the vibrational spectroscopy of small molecules
consists in quantizing each internal degree of freedom with
the algebra of U(2). The Hamiltonian for a set of n cou-
pled one-dimensional degrees of freedom is then written in
terms of the quasi-spin operators F+,i, F−,i, Fz,i for each
degree of freedom i. A Hamiltonian often used is [7]

H =E0 +
n∑
i=1

AiF
2
z,i +

n∑
i<j=1

B′ijFz,iFz,j

+
n∑

i<j=1

Bij (F+,iF−,j + F−,iF+,j) .

The first term in this Hamiltonian represents a set of n un-
coupled anharmonic oscillators, while the additional terms
represent coupling between the modes. Apart from some
overall constant, this Hamiltonian is the anharmonic ver-
sion of the coupled harmonic oscillator Hamiltonian

H =E0 +
n∑
i=1

Aia
†
iai +

n∑
i≤j=1

B′ija
†
iaia

†
jaj

+
n∑

i<j=1

Bij
(
a†iaj + a†iaj

)
·

In fact one can be obtained from the other by a simple
substitution.

For bending vibrations of linear molecules the mo-
tion occurs in the plane perpendicular to the axis of the
molecule (Fig. 3), that is in two dimensions. These vibra-
tions are therefore quantized with the algebra of U(3).
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Fig. 3. Bending vibrations in linear polyatomic molecules.

The algebra of U(3) is composed of nine operators. For
linear molecules one thus has one U(2) for each stretching
vibration and one U(3) for each bending vibration. The
expansion of the Hamiltonian operator is done in terms of
the four operators of U(2) and the nine operators of U(3).

This scheme has been used recently to study bent and
linear molecules. In bent triatomic molecules (SO2, S2O)
there are three one-dimensional degrees of freedom, quan-
tized with U(2) × U(2) × U(2) while in linear triatomic
molecules (CO2) there are two one-dimensional stretching
modes and one two-dimensional bending mode, U(2) ×
U(2) × U(3). Similarly, in linear four-atomic molecules
(C2H2) [14] one has U(2)×U(2)×U(2)×U(3)×U(3). By
fitting the experimental energy levels it has been possi-
ble to extract the algebraic parameters. These parameters
play the role of the force-field constants in the usual har-
monic analysis.

It is of importance to give a perspective on the results
obtained so far. First and foremost on the usefulness of
the Lie algebraic method and its comparison with usual
harmonic analysis. This is shown in Figure 4. Here the
r.m.s. deviation for CO2 is shown against the number of
basis states [15]. The curve “conventional” denotes the
usual harmonic analysis, while the curve “algebraic” de-
notes the anharmonic analysis. The convergence proper-
ties are clearly displayed in this figure. One can note that
for this molecule, for which there are strong Fermi reso-
nances between the double bending vibration and the sym-
metric stretch, the conventional analysis requires at least
1 500 basis states to converge to a good r.m.s. deviation,
while the algebraic analysis has already converged with
less than 1 000 states. The second important point of the
algebraic method is its ability to calculate vibrational en-
ergies to very high quantum numbers. This calculation is
feasible because one starts from the beginning with an an-
harmonic basis. Perturbations and couplings in this basis
are small. This situation is illustrated by the calculation
of SO2 where it has been possible to follow the vibrational
states up to 20 quanta of vibration. The possibility to re-
liably calculate highly excited states of molecules permits
several important questions to be answered, in particu-
lar the question on where and how the transition between
normal modes and local modes occurs and whether or not

Fig. 4. Convergence properties of the algebraic method as
compared with the conventional method. From reference [15].

chaotic properties emerge at some excitation energy. An
analysis of SO2 and H2O reveals that the transition from
normal to local occurs in SO2 at v ≈ 18, while it occurs in
H2O already at v ≈ 2 [16]. Figure 5 depicts the probabil-
ity density of vibrational eigenstates in SO2 obtained by
the algebraic method. The wave functions of the (vm, 0, 0)
states bifurcate at v = 18. In general, most molecules with
hydrogen bonds behave locally for v ≥ 2, although a much
more complex dynamics, equally well described in an al-
gebraic framework [14], is observed in certain molecules
such as acetylene, C2H2 [17].

As mentioned above one of the main advantages of the
algebraic method is that it permits a calculation of transi-
tion intensities (infrared, Raman and Franck-Condon). In-
tensities of transitions have not been much used in molec-
ular spectroscopy because absolute calibration is often
difficult. However, recently experimental techniques have
improved to such an extent as to be able to extract transi-
tion intensities. If so they provide an enormous amount of
information on the structure of molecules. A recent exam-
ple is the study of Franck-Condon intensities in S2O [18].
In studying transitions in the algebraic approach, one
needs a model of the transition operator. For infrared tran-
sitions one needs a dipole moment function. In the usual
harmonic analysis in one-dimension this is often expanded
in powers of the coordinate x

M(x) =
∑
k=0

mkx
k

or algebraically

M =
∑
k=0

mk

(
a+ a†

)k
.

This dipole moment function suffers from the same prob-
lems of the potential function, i.e. it is difficult to include
anharmonicities. In the algebraic approach the dipole
function is expanded in terms of algebraic operators

M =
∑
k=0

mk (F+ + F−)k .
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Fig. 5. The algebraic probability density of the vibrational eigenstates in the (vm, 0, 0) series of the fundamental electronic
state of SO2. Adapted from reference [26].

Fig. 6. Intensities of Franck-Condon transitions in the S2O
molecule. From reference [17].

A better form, often used, is

M = M0 exp [α (F+ + F−)] .

The algebraic approach provides a way to do calculations
of transition intensities in which the anharmonicities are
included from the beginning both in the potential function
and in the transition moment function. The technique has
given an excellent description of 1 000 Franck-Condon in-
tensities in S2O (Fig. 6). In addition, it has been possible
to extract information on the wave functions of both the
upper and the lower electronic manifold and information
of the extent to which non-Condon effects play a role in
these transitions [19].

Perspectives for the algebraic method in this area are:

(i) the study of other normal to local transitions and on-
set of chaos if any;

(ii) the study of Franck-Condon intensities in linear to
bent transitions.

4.2 Medium-size molecules

In contrast to small molecules, for medium size molecules
a convenient set of coordinates is provided by the local
coordinates. Local coordinates have the advantage that it
is possible to write down the Hamiltonian operator in a
simple form. They have the disadvantage that the spuri-
ous coordinates associated with overall translations and
rotations must be removed. Also, for mid-size molecules,
discrete symmetries play a major role. In view of these two
difficulties, mid-size molecules present a real challenge to
any calculation. Several techniques have been devised to
circumvent these difficulties. In order to circumvent the
first one, a technique often used is that of adding to the
Hamiltonian a term proportional to the center of mass
coordinates and letting the coefficient of that term go to
a large value. This removal of the center of mass motion
is exact if the potential is harmonic. Otherwise it is only
approximate and there is a small error in the calculation
of the vibrational modes which are admixed with the cen-
ter of mass motion. The technique has been used for the
calculation of benzene C6H6 [20]. In order to circumvent
the second problem, one can construct symmetry adapted
states and operators. Several methods have been used to
this end. One of the methods introduced by Frank, Lemus
and others has been used to formulate algebraic models
directly in terms of symmetry adapted operators [21]. Us-
ing another method, introduced by Chen, it has been pos-
sible to calculate vibrational states with up to v = 10
quanta of vibrations in octahedral molecules (UF6) [22].
The algebraic method is particularly useful in this area
since conventional methods are difficult to apply. Using
this method, it has been possible to analyze several phe-
nomena of particular importance, most importantly the
question of vibrational energy redistribution in medium-
size molecules.

Perspectives for the algebraic method in this area are:

(i) the study of IVR in increasingly complex molecules;
(ii) the study of molecules with substitutions and/or im-

purities, such as an atom at the center of the cage
in C60.

The spectroscopy of fullerene and its variants is an
important goal of the algebraic method. It can be greatly
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helped by the development of symmetry adapted bases for
the icosahedral group done by Chen and Ping [23].

4.3 Macromolecules

For macromolecules local coordinates are the best choice
and there is no problem in removing the spurious center
of mass motion since its role is negligible when the overall
mass of the molecule is large. Also the role of discrete sym-
metries is less prominent than in medium-size molecules.
The area of macromolecules has not been attacked with al-
gebraic methods so far. For this area thus the perspective
is to an open field. Similarly the information on vibrational
spectroscopy of these systems is not fully acquired. A com-
bination of theoretical and experimental studies could be
essential for a deep understanding of these structures.

5 Rotational spectroscopy

Although the main thrust of this article is on vibrational
spectroscopy where anharmonicities play an important
role, it is worthwhile discussing briefly the role of alge-
braic methods in rotational spectroscopy. Indeed algebraic
methods were initially introduced in molecular physics in
order to deal with both rotational and vibrational degrees
of freedom [3]. The idea here is to quantize the bond vari-
ables (vectors) in three-dimensional space. For harmonic
oscillators this leads to the introduction of vector creation
and annihilation operators

a† =
1√
2

(
r− ∂

∂r

)
a =

1√
2

(
r +

∂

∂r

)
and to the associated Heisenberg-Weyl algebra H(4). For
anharmonic oscillators this leads to the algebra of U(4).
The basis states of the three dimensional Morse oscillator
are now characterized by the vibrational quantum num-
ber v and the rotational quantum number J . The alge-
bra U(4) describes diatomic molecules for which there is
only a vector coordinate r. Triatomic molecules can be
described by introducing two vectors, r1 and r2 quantized
with U(4) × U(4) and four atomic molecules introducing
three vectors r1, r2, r3 [U(4)×U(4)×U(4)]. The advantage
of this scheme is that one treats simultaneously rotations
and vibrations and thus one can study situations in which
there is coupling between rotations and vibrations. The
disadvantages are that although results are obtained by
algebraic manipulation, these manipulations increase in
complexity as one goes from diatomic to triatomic to four
atomic molecules. Beyond four atoms the method becomes
intractable. Extensive calculations of linear and bent tri-
atomic molecules [24] have been done as well as of some
four atomic molecules [25]. Perspectives in this area are
the further study of vibration-rotation interactions and
their role in the spectroscopy of small molecules.

6 Perspectives for the algebraic method

In view of its generality, the algebraic method can be used
in many circumstances of interest in Chemical Physics.
There are two main direction for immediate development
of the algebraic method.

6.1 Floppy molecules

The method has been used so far mostly for situations in
which the potential has a sharp minimum as a function of
some coordinate x. However, there is a increasing number
of molecules where this condition is not met. The poten-
tial in the variable x may be rather flat. These situations
are encountered in non-rigid molecules. The way in which
these situations have been attacked so far has been that
of expanding into a harmonic oscillator or Morse potential
functions (algebraic force-field expansion [26]). For very
flat potentials this requires many terms in the expansion
(harmonic or anharmonic Morse). When the problem of
expanding an anharmonic potential in the harmonic ba-
sis was encountered, the solution was that of introducing
the Lie algebraic approach with a Hamiltonian operator
diagonal in the Morse (or Poeschl-Teller) basis. The sit-
uation in which the Hamiltonian operator is diagonal is
called dynamic symmetry. The difficulty posed by flat po-
tentials can be overcome by introducing Hamiltonian op-
erators which are not diagonal in either basis harmonic or
anharmonic Morse. These more general situations corre-
spond to breaking of dynamic symmetries and have been
investigated extensively in the study of atomic nuclei (in-
teracting boson model). The area of non-rigid (van der
Waals, quasi-linear, and the like) molecules is one of the
main perspectives for the algebraic model in the next few
years.

Another area of interest is that of potentials with many
minima such as those occurring in torsional oscillations
and to molecules with hindered rotations. Preliminary cal-
culations for the latter have been done [27].

6.2 Polymers

A second perspective is provided by the wealth of
new experimental information that is being obtained in
macromolecules and polymers including biomolecules and
biopolymers. The algebraic method here could be par-
ticularly useful for vibrational spectroscopy. For finite
polymers, results could be obtained by a combination
of analytical and numerical methods. For infinite dimen-
sional polymers, n → ∞, all results must be obtained
analytically. A research program in this direction has
started [28–30]. In view of its implications to practical
applications and to biology, this program is the main per-
spective for the algebraic model in the 21st century. The
algebraic method here could be useful in obtaining ana-
lytic expressions for polymer dispersion relations, for cal-
culation of the response of the system to infrared and
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Fig. 7. Ball and stick view of the 9-paraffine molecule, C9H20.

Raman radiation, and for understanding mode-mode cou-
plings. The preliminary work done so far has been for one-
dimensional linear chains. This work has been applied to
the study of paraffins [29] (Fig. 7), CH3−(CH2)n−2−CH3,
and polyethylene. It needs to be extended to the full set
of vibrational degrees of freedom (CH bending, torsion
and CC skeletal modes), to more complex geometric struc-
tures, such as helicoidal structures and to more than one
dimension (membranes). The modification in the spectro-
scopic information due to folding could also be investi-
gated.

7 Long-range perspectives

Among the long range perspectives, there is the study of
reactions between molecules. The algebraic method has
been used up to now mostly to study bound state prob-
lems. An algebraic treatment of the continuum was sug-
gested some time ago, but it has not been exploited much.
There are several problems within reach of the algebraic
method in this area:

(i) the study of resonances in the continuum,
(ii) the study of bound to free transitions in infrared ab-

sorption,
(iii) the study of bound to free transitions in Franck-

Condon processes,
(iv) the study of molecule-molecule collisions and

electron-molecule collisions.

The latter subject was in fact investigated in the early
1990’s by a combination of traditional and algebraic meth-
ods (the collision process was described by traditional
method while the structure was described algebraically).
It would be of interest to develop a fully algebraic descrip-
tion.

8 Conclusions

Lie algebraic methods have provided a new tool to system-
atically study problems in Chemical Physics. In the last
twenty years many molecular systems (small and medium-
size molecules) have been analyzed. The perspective in the
next few years is the analysis of larger, more complex sys-
tems (macromolecules, polymers). The main advantage of

the algebraic method is the introduction of anharmonici-
ties. There are other physical systems where anharmonici-
ties play a role. Among these liquids and surfaces. It would
be of great interest to expand the applications of the al-
gebraic method to cover these situations. The basic idea
behind algebraic methods is a simplification of the anal-
ysis through the use of sophisticated mathematical meth-
ods. This simplification becomes more and more useful as
the complexity of the system increases. For very complex
systems, such as biomolecules and biopolymers another
simplification could be brought in by the identification of
some relevant degrees of freedom. One could then consider
an algebraic description of the relevant degrees of freedom,
much in the same way in which it has been done in the
study of atomic nuclei [1].

In view of the many possible applications of the al-
gebraic method it is hoped that the present article will
stimulate further research, especially in the new areas of
complex systems for which alternative methods of analysis
are difficult to apply.
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